18k^2+15k-10=

Simple and best practice solution for 18k^2+15k-10= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18k^2+15k-10= equation:


Simplifying
18k2 + 15k + -10 = 0

Reorder the terms:
-10 + 15k + 18k2 = 0

Solving
-10 + 15k + 18k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
18 the coefficient of the squared term: 

Divide each side by '18'.
-0.5555555556 + 0.8333333333k + k2 = 0

Move the constant term to the right:

Add '0.5555555556' to each side of the equation.
-0.5555555556 + 0.8333333333k + 0.5555555556 + k2 = 0 + 0.5555555556

Reorder the terms:
-0.5555555556 + 0.5555555556 + 0.8333333333k + k2 = 0 + 0.5555555556

Combine like terms: -0.5555555556 + 0.5555555556 = 0.0000000000
0.0000000000 + 0.8333333333k + k2 = 0 + 0.5555555556
0.8333333333k + k2 = 0 + 0.5555555556

Combine like terms: 0 + 0.5555555556 = 0.5555555556
0.8333333333k + k2 = 0.5555555556

The k term is 0.8333333333k.  Take half its coefficient (0.4166666667).
Square it (0.1736111111) and add it to both sides.

Add '0.1736111111' to each side of the equation.
0.8333333333k + 0.1736111111 + k2 = 0.5555555556 + 0.1736111111

Reorder the terms:
0.1736111111 + 0.8333333333k + k2 = 0.5555555556 + 0.1736111111

Combine like terms: 0.5555555556 + 0.1736111111 = 0.7291666667
0.1736111111 + 0.8333333333k + k2 = 0.7291666667

Factor a perfect square on the left side:
(k + 0.4166666667)(k + 0.4166666667) = 0.7291666667

Calculate the square root of the right side: 0.853912564

Break this problem into two subproblems by setting 
(k + 0.4166666667) equal to 0.853912564 and -0.853912564.

Subproblem 1

k + 0.4166666667 = 0.853912564 Simplifying k + 0.4166666667 = 0.853912564 Reorder the terms: 0.4166666667 + k = 0.853912564 Solving 0.4166666667 + k = 0.853912564 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + k = 0.853912564 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + k = 0.853912564 + -0.4166666667 k = 0.853912564 + -0.4166666667 Combine like terms: 0.853912564 + -0.4166666667 = 0.4372458973 k = 0.4372458973 Simplifying k = 0.4372458973

Subproblem 2

k + 0.4166666667 = -0.853912564 Simplifying k + 0.4166666667 = -0.853912564 Reorder the terms: 0.4166666667 + k = -0.853912564 Solving 0.4166666667 + k = -0.853912564 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + k = -0.853912564 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + k = -0.853912564 + -0.4166666667 k = -0.853912564 + -0.4166666667 Combine like terms: -0.853912564 + -0.4166666667 = -1.2705792307 k = -1.2705792307 Simplifying k = -1.2705792307

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.4372458973, -1.2705792307}

See similar equations:

| m/-8=-7 | | in(x-50)+in(5x+1)=9 | | 9(p+3)=36 | | 2(3k-4)(3k+4)= | | 6(3y+1)-3=18(y-2)+39 | | 4(4+3p)= | | 6(x-3)+x=-2+3x | | tg^2x-5sinx*cosx+6cos^2x=0 | | -5.6=h*5+12.2 | | 6-5(8-n)=-19 | | 1/2x-3/2=3/2 | | -9/5=-3w | | 4-3(x-4)=-7 | | 17(x+3+8z)= | | 11.3y=4.62 | | 6x-18+x=-2+3x | | 3.5b=70 | | x=log^2-3 | | 2cos^2x+5cosx+4=0 | | X/2=-128 | | 2(x-10)=7(x-5) | | 4(x-1)=-10 | | 4-2(w-1)=-5 | | 3m+5m=m-7m-18 | | 7(x+2)-1=7x+13 | | -9.5x-0.005=10.5x+1.05 | | 2-3(1-y)=14 | | 5+r=14-2 | | 3[1-3(x+2)]=-x | | ln(4x-3)+8=10 | | 3(5s-4)+13=4(s-2)-(-10s+1) | | 12=-3/8v |

Equations solver categories